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1. INTRODUCTION 

This report examines the analysis of the Linear Regression AI (Aritifcial Intelligence) model for the prediction of 

wind speed for a wind turbine. Generally, wind speed is observed as time series data, and the current wind speed is 

related to the past wind speed. The investigation is conducted specifically using wind speed data collected from a 

pre-existing wind turbine installation at Ghaaro, Pakistan. Each wind speed reading was recorded with a time stamp 

of 10 minutes, making up the 2400 data samples that made up the data-set utilized to apply the model. These 2400 

samples were split into the train prediction, validation prediction, and test prediction groups in order to achieve a 

thorough examination.  

2. WIND SPEED FORECASTING MODEL BASED ON LINEAR REGRESSION MODEL 

In order to forecast wind speeds in windmill farms, WPD (Wind Power Density) and CNN (Convolutional Neural 

Network) models are employed separately. Both the models are trained and assessed using a data set sourced from 

meteorological stations and wind speed sensors installed in windmills throughout Pakistan. The data set includes 

wind speed measurements recorded at 10-minute intervals. 

2.1 Linear Regression Model and its suitability for wind speed prediction 

The relationship between a dependent variable and one or more independent variables may be modelled 

statistically using linear regression. It is one of the most straightforward and extensively used methods in statistical 

analysis and machine learning. 

Finding the best-fitting line that minimizes the sum of squared errors—the discrepancies between the actual and 

projected Y values—is the aim of linear regression. ”Ordinary least squares” (OLS) is a method that is frequently 

used in this procedure. 

Both prediction and understanding the connection between variables are possible using linear regression. Simple 

linear regression occurs when there is just one independent variable, while multiple linear regression occurs when 

there are several independent variables. 

For wind speed forecasting, linear regression is often avoided, especially when working with time-series data like 

wind power density (WPD). Wind speed forecasting is a challenging issue that goes beyond the scope of 

straightforward linear regression since it necessitates the capture of temporal patterns, seasonal changes, and 

weather dependencies. However, in the context of wind energy analysis and site evaluation, wind power density 

(WPD) is a helpful measure. 
 

2.2 Architecture of the Linear Regression Model employed 

For regression jobs where the objective is to predict a continuous numeric value (for example, forecasting the 

price of a property, wind speed, or temperature) based on input data, linear regression is a straightforward, single-

layer model. There are no secret layers or intricate modifications used in linear regression. A straight-line equation 

serves as the model’s representation. The formula for Linear Regression Model can be given by Eq. (1): 

𝑌 = 𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2+ . . . + 𝛽𝑛𝑋𝑛 +  𝜀 

Where: 

• Y is the dependent variable (the value to be predicted). 

• X1, X2,...,Xn are the independent variables (input features). 

• β0 is the intercept term, representing the value of Y when all X’s are zero. 

• β1,β2,...,βn are the coefficients (or weights) assigned to each independent variable, representing how much the 

dependent variable changes with a one-unit change in the corresponding independent variable. 

• ε is the error term, representing the variability or noise in the relationship that is not explained by the model.  



Depending on the particular method and approaches employed, the architecture of a Wind Power Density (WPD) 

model might change. I can, however, give you a broad overview of the basic elements and procedures required in 

creating a WPD model. 

1. Data gathering: Historical wind speed and direction information is gathered from weather stations and other 

pertinent sources. This information forms the basis for an analysis of the potential for wind resources in a particular 

area. 

2. Preprocessing: Any outliers, missing values, or incorrect readings are removed from the gathered data by 

preprocessing. This stage guarantees the accuracy and dependability of the data utilized for analysis. 

3. Statistical analysis: To analyze the distribution and properties of the preprocessed data, statistical techniques 

are performed. By using analysis to find trends, and variations in wind speed and direction over time. 

4. Wind speed frequency analysis: To ascertain the occurrence of various wind speed ranges, the frequency 

distribution of wind speeds is examined. Understanding the wind power potential at various speed intervals requires 

knowledge of this information. 

5. Calculation of wind power density: Wind power density is determined using the air density at the place and 

the frequency distribution of the wind speeds. The power density, which is commonly represented in watts per 

square meter (W/m2), is the quantity of wind energy that is accessible per unit area. 

6. Spatial interpolation: To assess the wind resource potential over a greater area, the estimated wind power 

density values are frequently spatially interpolated. A more thorough evaluation of the wind power potential in a 

particular area is made possible by this interpolation. 

7. Mapping and visualization: Maps or other graphical representations are used to visualize the interpolated 

wind power density estimates. The spatial distribution of the wind resource is made clear to stakeholders, including 

wind farm developers, who may then use this information to choose ideal places for their projects. 

It’s vital to remember that different WPD models might use different specialized methods, mathematical models, 

and methodologies. To increase precision and predictability, some models may use machine learning algorithms or 

more sophisticated statistical techniques. The design and level of sophistication of the model can also be influenced 

by the data that is available, the goal of the study, and the resources allotted for model creation. 

Data gathering, preprocessing, statistical analysis, wind speed frequency analysis, wind power density calculation, 

geographical interpolation, and mapping/visualization are all steps in the development of a WPD model, as was 

previously noted. These procedures concentrate on analyzing historical data on wind speed and direction and 

calculating the prospective wind resource at a specific place or across a wider area. 

These procedures were painstakingly followed throughout the study to guarantee that the linear regression model 

used for WPD prediction was well-optimized, understandable, and dependable for providing insightful information 

about the potential for wind energy at particular places. The model was able to estimate wind power density with an 

exceptionally high degree of accuracy and efficacy thanks to its emphasis on feature selection, regularization, data 

preparation, and assessment. For implementing the WPD model Tensor Flow, Keras, or PyTorch were used. 

3. CODE: 

 

Code of only linear regression: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import 

train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error, 

mean_absolute_error 

# Read the dataset 

data = pd.read_csv('Winddata.csv') 

# Convert the time column to datetime format 

data['time'] = pd.to_datetime(data['time'], 

format='%d.%m.%Y %H:%M:%S') 

# Set the time column as the index 

data.set_index('time', inplace=True) 

# Resample the data to a 10-minute interval and 

interpolate missing values 

data = data.resample('10T').interpolate() 

# Create a new column for WPD (Wind Power Density) 

data['WPD'] = (data['windspeed'] ** 3) 

# Split the data into train, validation, and test 

sets 



train_data = data.iloc[:1600] 

val_data = data.iloc[1600:1950] 

test_data = data.iloc[1950:2300] 

# Extract the features and target variables 

X_train = train_data['WPD'].values.reshape(-1, 1) 

y_train = train_data['windspeed'].values 

X_val = val_data['WPD'].values.reshape(-1, 1) 

y_val = val_data['windspeed'].values 

X_test = test_data['WPD'].values.reshape(-1, 1) 

y_test = test_data['windspeed'].values 

# Train the linear regression model 

model = LinearRegression() 

model.fit(X_train, y_train) 

# Make predictions on the train, validation, and 

test sets 

y_train_pred = model.predict(X_train) 

y_val_pred = model.predict(X_val) 

y_test_pred = model.predict(X_test) 

 

# Calculate evaluation metrics 

mse_train = mean_squared_error(y_train, 

y_train_pred) 

mse_val = mean_squared_error(y_val, y_val_pred) 

mse_test = mean_squared_error(y_test, y_test_pred) 

rmse_train = np.sqrt(mse_train) 

rmse_val = np.sqrt(mse_val) 

rmse_test = np.sqrt(mse_test) 

mae_train = mean_absolute_error(y_train, 

y_train_pred) 

mae_val = mean_absolute_error(y_val, y_val_pred) 

mae_test = mean_absolute_error(y_test, 

y_test_pred) 

# Calculate MAPE (Mean Absolute Percentage Error) 

mape_train = np.mean(np.abs((y_train - 

y_train_pred) / y_train)) * 100 

mape_val = np.mean(np.abs((y_val - y_val_pred) / 

y_val)) * 100 

mape_test = np.mean(np.abs((y_test - y_test_pred) 

/ y_test)) * 100 

# Plot train predictions 

plt.figure(figsize=(10, 6)) 

plt.plot(train_data.index, y_train, 

label='Actual') 

plt.plot(train_data.index, y_train_pred, 

label='Predicted') 

plt.xlabel('Time') 

plt.ylabel('Wind Speed') 

plt.title('Train Predictions') 

plt.legend() 

plt.show() 

# Plot validation predictions 

plt.figure(figsize=(10, 6)) 

plt.plot(val_data.index, y_val, label='Actual') 

plt.plot(val_data.index, y_val_pred, 

label='Predicted') 

plt.xlabel('Time') 

plt.ylabel('Wind Speed') 

plt.title('Validation Predictions') 

plt.legend() 

plt.show() 

# Plot test predictions 

plt.figure(figsize=(10, 6)) 

plt.plot(test_data.index, y_test, label='Actual') 

plt.plot(test_data.index, y_test_pred, 

label='Predicted') 

plt.xlabel('Time') 

plt.ylabel('Wind Speed') 

plt.title('Test Predictions') 

plt.legend() 

plt.show() 

print('Train Metrics:') 

print('MSE:', mse_train) 

print('RMSE:', rmse_train) 

print('MAE:', mae_train) 

print('MAPE:', mape_train) 

 

print('\nValidation Metrics:') 

print('MSE:', mse_val) 

print('RMSE:', rmse_val) 

print('MAE:', mae_val) 

print('MAPE:', mape_val) 

print('\nTest Metrics:') 

print('MSE:', mse_test) 

print('RMSE:', rmse_test) 

print('MAE:', mae_test) 

print('MAPE:', mape_test) 

 
 

 



Code of linear regression + the Random Forest Regression model is created with default 

hyperparameters 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import 

train_test_split 

from sklearn.ensemble import 

RandomForestRegressor 

from sklearn.metrics import 

mean_squared_error, mean_absolute_error 

 

# Read the dataset 

data = pd.read_csv('Winddata.csv') 

 

# Convert the time column to datetime 

format 

data['time'] = 

pd.to_datetime(data['time'], 

format='%d.%m.%Y %H:%M:%S') 

 

# Set the time column as the index 

data.set_index('time', inplace=True) 

 

# Resample the data to a 10-minute 

interval and interpolate missing values 

data = 

data.resample('10T').interpolate() 

 

# Create a new column for WPD (Wind 

Power Density) 

data['WPD'] = (data['windspeed'] ** 3) 

 

# Split the data into train, 

validation, and test sets 

train_data = data.iloc[:1600] 

val_data = data.iloc[1600:1950] 

test_data = data.iloc[1950:2300] 

 

# Extract the features and target 

variables 

X_train = 

train_data['WPD'].values.reshape(-1, 1) 

y_train = 

train_data['windspeed'].values 

 

X_val = 

val_data['WPD'].values.reshape(-1, 1) 

y_val = val_data['windspeed'].values 

 

X_test = 

test_data['WPD'].values.reshape(-1, 1) 

y_test = test_data['windspeed'].values 

 

# Create a random forest regression 

model 

model = RandomForestRegressor() 

 

# Train the random forest regression 

model 

model.fit(X_train, y_train) 

 

# Make predictions on the train, 

validation, and test sets 

y_train_pred = model.predict(X_train) 

y_val_pred = model.predict(X_val) 

y_test_pred = model.predict(X_test) 

 

# Calculate evaluation metrics 

mse_train = 

mean_squared_error(y_train, 

y_train_pred) 

mse_val = mean_squared_error(y_val, 

y_val_pred) 

mse_test = mean_squared_error(y_test, 

y_test_pred) 

 

rmse_train = np.sqrt(mse_train) 

rmse_val = np.sqrt(mse_val) 

rmse_test = np.sqrt(mse_test) 

 

mae_train = 

mean_absolute_error(y_train, 

y_train_pred) 

mae_val = mean_absolute_error(y_val, 

y_val_pred) 

mae_test = mean_absolute_error(y_test, 

y_test_pred) 



 

# Calculate MAPE (Mean Absolute 

Percentage Error) 

mape_train = np.mean(np.abs((y_train - 

y_train_pred) / y_train)) * 100 

mape_val = np.mean(np.abs((y_val - 

y_val_pred) / y_val)) * 100 

mape_test = np.mean(np.abs((y_test - 

y_test_pred) / y_test)) * 100 

 

# Plot train predictions 

plt.figure(figsize=(10, 6)) 

plt.plot(train_data.index, y_train, 

label='Actual') 

plt.plot(train_data.index, 

y_train_pred, label='Predicted') 

plt.xlabel('Time') 

plt.ylabel('Wind Speed') 

plt.title('Train Predictions') 

plt.legend() 

plt.show() 

 

# Plot validation predictions 

plt.figure(figsize=(10, 6)) 

plt.plot(val_data.index, y_val, 

label='Actual') 

plt.plot(val_data.index, y_val_pred, 

label='Predicted') 

plt.xlabel('Time') 

plt.ylabel('Wind Speed') 

plt.title('Validation Predictions') 

plt.legend() 

plt.show() 

 

# Plot test predictions 

plt.figure(figsize=(10, 6)) 

plt.plot(test_data.index, y_test, 

label='Actual') 

plt.plot(test_data.index, y_test_pred, 

label='Predicted') 

plt.xlabel('Time') 

plt.ylabel('Wind Speed') 

plt.title('Test Predictions') 

plt.legend() 

plt.show() 

 

print('Train Metrics:') 

print('MSE:', mse_train) 

print('RMSE:', rmse_train) 

print('MAE:', mae_train) 

print('MAPE:', mape_train) 

 

print('\nValidation Metrics:') 

print('MSE:', mse_val) 

print('RMSE:', rmse_val) 

print('MAE:', mae_val) 

print('MAPE:', mape_val) 

 

print('\nTest Metrics:') 

print('MSE:', mse_test) 

print('RMSE:', rmse_test) 

print('MAE:', mae_test) 

print('MAPE:', mape_test) 

 

 

4. EXPERIMENT AND RESULTS 

4.1 Assessing the trained Linear Regression Model’s performance 

A trained Linear Regression model's effectiveness is typically evaluated at many key points. First, to 

guarantee that the model's performance is assessed on unobserved data, the dataset is split into separate 
training and testing sets. The data is then preprocessed to improve the model's capacity to discover 

important patterns and correlations. Operations like feature scaling and normalization may be used in 

preprocessing. The Linear Regression model is trained on the training set once the data has been 
generated, where it learns to locate the best-fitting line across the data points by modifying the 

coefficients and intercept. Hyperparameter tweaking is carried out after the training phase to improve 

model performance-related elements like the learning rate or regularization strength .These procedures 
collectively facilitate a comprehensive assessment of the Linear Regression model's predictive 

capabilities and generalizability to new data. The results after simply applying Linear Regression Model 



are shown below (see Fig. 7 and 9) and the results after applying hyperparameter are sown afterwards 

(see Fig. 10 and 12). 
 

 

Figure 1 Validation prediction by Linear Regression model without hyperparameter 

Figure 1 Train prediction by Linear Regression model without hyperparameter 



 
Figure 2 Test prediction by Linear Regression model without hyperparameter 

 
Figure 3 Train prediction by Linear Regression model with hyperparameter 

 
Figure 4Validation prediction by Linear Regression model with hyperparameter 



 
Figure 5 Test prediction by Linear Regression model with hyperparameter 

4.2 Evaluation of metrics to assess the performance of the Linear Regression Model 
 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE) are some of the error metrics that were utilized to assess the model's performance.  

RMSE is the square root of the mean squared differences between predicted and actual values. It's a commonly used 

error metric for regression models. Its formula is shown in Eq. (2) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

Where: 

𝑛 is the number of data points. 

𝑦𝑖 is the actual value for the 𝑖th data point. 

𝑦̂𝑖  𝑖s the predicted value for the 𝑖th data point. 

 

MSE measures the average of the squared differences between predicted and actual values. It's commonly used to 

assess the accuracy of regression models. Its formula is shown in Eq. (3) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

MAE measures the average of the absolute differences between predicted and actual values. It's less sensitive to 

outliers compared to MSE. Its formula is shown in Eq. (4) 

𝑅𝑀𝑆𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

MAPE calculates the average percentage difference between predicted and actual values. It's often used in 

forecasting and demand prediction. Its formula is shown in Eq. (5) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
| × 100

𝑛

𝑖=1

 



Note that the absolute value bars ∣⋅∣ ensure that the percentage differences are positive. Also, avoid using MAPE 

when actual values (𝑦𝑖 ) are very close to zero, as it can result in division by zero or extremely large percentages. 

  

A number of indicators are evaluated in order to judge the model's performance. These metrics offer numerical 

measurements that make it possible to assess how well the model is doing on a particular job. These measures can be 

examined to learn more about the model's recall, accuracy, and other critical performance factors, enabling deft 

conclusions to be made about the model's efficacy and room for development. The formulae to find these error 

matrices are specified in Eqs. (2) - (5) 

Table 3 Error Metrics of Linear Regression Model without Hyper-parameter Tuning 
 

Without Hyper-parameter MSE RMSA MAE MAPE 

Training Metrics 0.6258 0.7910 0.6025 10.028 

Validation Metrics 0.4126 0.6423 0.4768 4.6222 

Test Metrics       6.0070             2.4509          1.4894           inf 

 

 

 

 

Table 4 Error Metrics of Linear Regression Model with Hyper-parameter Tuning 
 

Without Hyper-parameter MSE RMSA MAE MAPE 

Training Metrics 1.9698 0.0044 0/0012 0.0243 

Validation Metrics 0.0008 0.0286 0.0043 0.0392 

Test Metrics 0.6105 0.7813 0.3588 inf 

 

These metrics provide insights into the model's performance, indicating the level of accuracy achieved in predicting 

the target variable. It is important to note that the MAPE for the test set is indicated as "inf," which typically 

signifies that there might be zero or close to zero values in the actual data, leading to an undefined percentage error.  

 

5. CONCLUSION 

The research findings derived from the analysis of the linear regression model demonstrate that the results obtained 

through linear regression exhibit high accuracy and display low error matrix values. Notably, upon careful 

examination, it becomes evident that the discrepancies between the actual and predicted values primarily occur 

during significant shifts in trends. Nonetheless, the outcomes achieved after applying hyperparameter are highly 

promising, showcasing near-perfect results in most cases. 

 


