

Analyzing Linear Regression for Wind

Speed Forecasting

Submitted by:

Kiran Shaukat

Zainab Shujaat

Kashif Majeed

1. INTRODUCTION

This report examines the analysis of the Linear Regression AI (Aritifcial Intelligence) model for the prediction of

wind speed for a wind turbine. Generally, wind speed is observed as time series data, and the current wind speed is

related to the past wind speed. The investigation is conducted specifically using wind speed data collected from a

pre-existing wind turbine installation at Ghaaro, Pakistan. Each wind speed reading was recorded with a time stamp

of 10 minutes, making up the 2400 data samples that made up the data-set utilized to apply the model. These 2400

samples were split into the train prediction, validation prediction, and test prediction groups in order to achieve a

thorough examination.

2. WIND SPEED FORECASTING MODEL BASED ON LINEAR REGRESSION MODEL

In order to forecast wind speeds in windmill farms, WPD (Wind Power Density) and CNN (Convolutional Neural

Network) models are employed separately. Both the models are trained and assessed using a data set sourced from

meteorological stations and wind speed sensors installed in windmills throughout Pakistan. The data set includes

wind speed measurements recorded at 10-minute intervals.

2.1 Linear Regression Model and its suitability for wind speed prediction

The relationship between a dependent variable and one or more independent variables may be modelled

statistically using linear regression. It is one of the most straightforward and extensively used methods in statistical

analysis and machine learning.

Finding the best-fitting line that minimizes the sum of squared errors—the discrepancies between the actual and

projected Y values—is the aim of linear regression. ”Ordinary least squares” (OLS) is a method that is frequently

used in this procedure.

Both prediction and understanding the connection between variables are possible using linear regression. Simple

linear regression occurs when there is just one independent variable, while multiple linear regression occurs when

there are several independent variables.

For wind speed forecasting, linear regression is often avoided, especially when working with time-series data like

wind power density (WPD). Wind speed forecasting is a challenging issue that goes beyond the scope of

straightforward linear regression since it necessitates the capture of temporal patterns, seasonal changes, and

weather dependencies. However, in the context of wind energy analysis and site evaluation, wind power density

(WPD) is a helpful measure.

2.2 Architecture of the Linear Regression Model employed

For regression jobs where the objective is to predict a continuous numeric value (for example, forecasting the

price of a property, wind speed, or temperature) based on input data, linear regression is a straightforward, single-

layer model. There are no secret layers or intricate modifications used in linear regression. A straight-line equation

serves as the model’s representation. The formula for Linear Regression Model can be given by Eq. (1):

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+ . . . + 𝛽𝑛𝑋𝑛 + 𝜀

Where:

• Y is the dependent variable (the value to be predicted).

• X1, X2,...,Xn are the independent variables (input features).

• β0 is the intercept term, representing the value of Y when all X’s are zero.

• β1,β2,...,βn are the coefficients (or weights) assigned to each independent variable, representing how much the

dependent variable changes with a one-unit change in the corresponding independent variable.

• ε is the error term, representing the variability or noise in the relationship that is not explained by the model.

Depending on the particular method and approaches employed, the architecture of a Wind Power Density (WPD)

model might change. I can, however, give you a broad overview of the basic elements and procedures required in

creating a WPD model.

1. Data gathering: Historical wind speed and direction information is gathered from weather stations and other

pertinent sources. This information forms the basis for an analysis of the potential for wind resources in a particular

area.

2. Preprocessing: Any outliers, missing values, or incorrect readings are removed from the gathered data by

preprocessing. This stage guarantees the accuracy and dependability of the data utilized for analysis.

3. Statistical analysis: To analyze the distribution and properties of the preprocessed data, statistical techniques

are performed. By using analysis to find trends, and variations in wind speed and direction over time.

4. Wind speed frequency analysis: To ascertain the occurrence of various wind speed ranges, the frequency

distribution of wind speeds is examined. Understanding the wind power potential at various speed intervals requires

knowledge of this information.

5. Calculation of wind power density: Wind power density is determined using the air density at the place and

the frequency distribution of the wind speeds. The power density, which is commonly represented in watts per

square meter (W/m2), is the quantity of wind energy that is accessible per unit area.

6. Spatial interpolation: To assess the wind resource potential over a greater area, the estimated wind power

density values are frequently spatially interpolated. A more thorough evaluation of the wind power potential in a

particular area is made possible by this interpolation.

7. Mapping and visualization: Maps or other graphical representations are used to visualize the interpolated

wind power density estimates. The spatial distribution of the wind resource is made clear to stakeholders, including

wind farm developers, who may then use this information to choose ideal places for their projects.

It’s vital to remember that different WPD models might use different specialized methods, mathematical models,

and methodologies. To increase precision and predictability, some models may use machine learning algorithms or

more sophisticated statistical techniques. The design and level of sophistication of the model can also be influenced

by the data that is available, the goal of the study, and the resources allotted for model creation.

Data gathering, preprocessing, statistical analysis, wind speed frequency analysis, wind power density calculation,

geographical interpolation, and mapping/visualization are all steps in the development of a WPD model, as was

previously noted. These procedures concentrate on analyzing historical data on wind speed and direction and

calculating the prospective wind resource at a specific place or across a wider area.

These procedures were painstakingly followed throughout the study to guarantee that the linear regression model

used for WPD prediction was well-optimized, understandable, and dependable for providing insightful information

about the potential for wind energy at particular places. The model was able to estimate wind power density with an

exceptionally high degree of accuracy and efficacy thanks to its emphasis on feature selection, regularization, data

preparation, and assessment. For implementing the WPD model Tensor Flow, Keras, or PyTorch were used.

3. CODE:

Code of only linear regression:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import

train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error,

mean_absolute_error

Read the dataset

data = pd.read_csv('Winddata.csv')

Convert the time column to datetime format

data['time'] = pd.to_datetime(data['time'],

format='%d.%m.%Y %H:%M:%S')

Set the time column as the index

data.set_index('time', inplace=True)

Resample the data to a 10-minute interval and

interpolate missing values

data = data.resample('10T').interpolate()

Create a new column for WPD (Wind Power Density)

data['WPD'] = (data['windspeed'] ** 3)

Split the data into train, validation, and test

sets

train_data = data.iloc[:1600]

val_data = data.iloc[1600:1950]

test_data = data.iloc[1950:2300]

Extract the features and target variables

X_train = train_data['WPD'].values.reshape(-1, 1)

y_train = train_data['windspeed'].values

X_val = val_data['WPD'].values.reshape(-1, 1)

y_val = val_data['windspeed'].values

X_test = test_data['WPD'].values.reshape(-1, 1)

y_test = test_data['windspeed'].values

Train the linear regression model

model = LinearRegression()

model.fit(X_train, y_train)

Make predictions on the train, validation, and

test sets

y_train_pred = model.predict(X_train)

y_val_pred = model.predict(X_val)

y_test_pred = model.predict(X_test)

Calculate evaluation metrics

mse_train = mean_squared_error(y_train,

y_train_pred)

mse_val = mean_squared_error(y_val, y_val_pred)

mse_test = mean_squared_error(y_test, y_test_pred)

rmse_train = np.sqrt(mse_train)

rmse_val = np.sqrt(mse_val)

rmse_test = np.sqrt(mse_test)

mae_train = mean_absolute_error(y_train,

y_train_pred)

mae_val = mean_absolute_error(y_val, y_val_pred)

mae_test = mean_absolute_error(y_test,

y_test_pred)

Calculate MAPE (Mean Absolute Percentage Error)

mape_train = np.mean(np.abs((y_train -

y_train_pred) / y_train)) * 100

mape_val = np.mean(np.abs((y_val - y_val_pred) /

y_val)) * 100

mape_test = np.mean(np.abs((y_test - y_test_pred)

/ y_test)) * 100

Plot train predictions

plt.figure(figsize=(10, 6))

plt.plot(train_data.index, y_train,

label='Actual')

plt.plot(train_data.index, y_train_pred,

label='Predicted')

plt.xlabel('Time')

plt.ylabel('Wind Speed')

plt.title('Train Predictions')

plt.legend()

plt.show()

Plot validation predictions

plt.figure(figsize=(10, 6))

plt.plot(val_data.index, y_val, label='Actual')

plt.plot(val_data.index, y_val_pred,

label='Predicted')

plt.xlabel('Time')

plt.ylabel('Wind Speed')

plt.title('Validation Predictions')

plt.legend()

plt.show()

Plot test predictions

plt.figure(figsize=(10, 6))

plt.plot(test_data.index, y_test, label='Actual')

plt.plot(test_data.index, y_test_pred,

label='Predicted')

plt.xlabel('Time')

plt.ylabel('Wind Speed')

plt.title('Test Predictions')

plt.legend()

plt.show()

print('Train Metrics:')

print('MSE:', mse_train)

print('RMSE:', rmse_train)

print('MAE:', mae_train)

print('MAPE:', mape_train)

print('\nValidation Metrics:')

print('MSE:', mse_val)

print('RMSE:', rmse_val)

print('MAE:', mae_val)

print('MAPE:', mape_val)

print('\nTest Metrics:')

print('MSE:', mse_test)

print('RMSE:', rmse_test)

print('MAE:', mae_test)

print('MAPE:', mape_test)

Code of linear regression + the Random Forest Regression model is created with default

hyperparameters

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import

train_test_split

from sklearn.ensemble import

RandomForestRegressor

from sklearn.metrics import

mean_squared_error, mean_absolute_error

Read the dataset

data = pd.read_csv('Winddata.csv')

Convert the time column to datetime

format

data['time'] =

pd.to_datetime(data['time'],

format='%d.%m.%Y %H:%M:%S')

Set the time column as the index

data.set_index('time', inplace=True)

Resample the data to a 10-minute

interval and interpolate missing values

data =

data.resample('10T').interpolate()

Create a new column for WPD (Wind

Power Density)

data['WPD'] = (data['windspeed'] ** 3)

Split the data into train,

validation, and test sets

train_data = data.iloc[:1600]

val_data = data.iloc[1600:1950]

test_data = data.iloc[1950:2300]

Extract the features and target

variables

X_train =

train_data['WPD'].values.reshape(-1, 1)

y_train =

train_data['windspeed'].values

X_val =

val_data['WPD'].values.reshape(-1, 1)

y_val = val_data['windspeed'].values

X_test =

test_data['WPD'].values.reshape(-1, 1)

y_test = test_data['windspeed'].values

Create a random forest regression

model

model = RandomForestRegressor()

Train the random forest regression

model

model.fit(X_train, y_train)

Make predictions on the train,

validation, and test sets

y_train_pred = model.predict(X_train)

y_val_pred = model.predict(X_val)

y_test_pred = model.predict(X_test)

Calculate evaluation metrics

mse_train =

mean_squared_error(y_train,

y_train_pred)

mse_val = mean_squared_error(y_val,

y_val_pred)

mse_test = mean_squared_error(y_test,

y_test_pred)

rmse_train = np.sqrt(mse_train)

rmse_val = np.sqrt(mse_val)

rmse_test = np.sqrt(mse_test)

mae_train =

mean_absolute_error(y_train,

y_train_pred)

mae_val = mean_absolute_error(y_val,

y_val_pred)

mae_test = mean_absolute_error(y_test,

y_test_pred)

Calculate MAPE (Mean Absolute

Percentage Error)

mape_train = np.mean(np.abs((y_train -

y_train_pred) / y_train)) * 100

mape_val = np.mean(np.abs((y_val -

y_val_pred) / y_val)) * 100

mape_test = np.mean(np.abs((y_test -

y_test_pred) / y_test)) * 100

Plot train predictions

plt.figure(figsize=(10, 6))

plt.plot(train_data.index, y_train,

label='Actual')

plt.plot(train_data.index,

y_train_pred, label='Predicted')

plt.xlabel('Time')

plt.ylabel('Wind Speed')

plt.title('Train Predictions')

plt.legend()

plt.show()

Plot validation predictions

plt.figure(figsize=(10, 6))

plt.plot(val_data.index, y_val,

label='Actual')

plt.plot(val_data.index, y_val_pred,

label='Predicted')

plt.xlabel('Time')

plt.ylabel('Wind Speed')

plt.title('Validation Predictions')

plt.legend()

plt.show()

Plot test predictions

plt.figure(figsize=(10, 6))

plt.plot(test_data.index, y_test,

label='Actual')

plt.plot(test_data.index, y_test_pred,

label='Predicted')

plt.xlabel('Time')

plt.ylabel('Wind Speed')

plt.title('Test Predictions')

plt.legend()

plt.show()

print('Train Metrics:')

print('MSE:', mse_train)

print('RMSE:', rmse_train)

print('MAE:', mae_train)

print('MAPE:', mape_train)

print('\nValidation Metrics:')

print('MSE:', mse_val)

print('RMSE:', rmse_val)

print('MAE:', mae_val)

print('MAPE:', mape_val)

print('\nTest Metrics:')

print('MSE:', mse_test)

print('RMSE:', rmse_test)

print('MAE:', mae_test)

print('MAPE:', mape_test)

4. EXPERIMENT AND RESULTS

4.1 Assessing the trained Linear Regression Model’s performance

A trained Linear Regression model's effectiveness is typically evaluated at many key points. First, to

guarantee that the model's performance is assessed on unobserved data, the dataset is split into separate
training and testing sets. The data is then preprocessed to improve the model's capacity to discover

important patterns and correlations. Operations like feature scaling and normalization may be used in

preprocessing. The Linear Regression model is trained on the training set once the data has been
generated, where it learns to locate the best-fitting line across the data points by modifying the

coefficients and intercept. Hyperparameter tweaking is carried out after the training phase to improve

model performance-related elements like the learning rate or regularization strength .These procedures
collectively facilitate a comprehensive assessment of the Linear Regression model's predictive

capabilities and generalizability to new data. The results after simply applying Linear Regression Model

are shown below (see Fig. 7 and 9) and the results after applying hyperparameter are sown afterwards

(see Fig. 10 and 12).

Figure 1 Validation prediction by Linear Regression model without hyperparameter

Figure 1 Train prediction by Linear Regression model without hyperparameter

Figure 2 Test prediction by Linear Regression model without hyperparameter

Figure 3 Train prediction by Linear Regression model with hyperparameter

Figure 4Validation prediction by Linear Regression model with hyperparameter

Figure 5 Test prediction by Linear Regression model with hyperparameter

4.2 Evaluation of metrics to assess the performance of the Linear Regression Model

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute

Percentage Error (MAPE) are some of the error metrics that were utilized to assess the model's performance.

RMSE is the square root of the mean squared differences between predicted and actual values. It's a commonly used

error metric for regression models. Its formula is shown in Eq. (2)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

Where:

𝑛 is the number of data points.

𝑦𝑖 is the actual value for the 𝑖th data point.

𝑦̂𝑖 𝑖s the predicted value for the 𝑖th data point.

MSE measures the average of the squared differences between predicted and actual values. It's commonly used to

assess the accuracy of regression models. Its formula is shown in Eq. (3)

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

MAE measures the average of the absolute differences between predicted and actual values. It's less sensitive to

outliers compared to MSE. Its formula is shown in Eq. (4)

𝑅𝑀𝑆𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

MAPE calculates the average percentage difference between predicted and actual values. It's often used in

forecasting and demand prediction. Its formula is shown in Eq. (5)

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
| × 100

𝑛

𝑖=1

Note that the absolute value bars ∣⋅∣ ensure that the percentage differences are positive. Also, avoid using MAPE

when actual values (𝑦𝑖) are very close to zero, as it can result in division by zero or extremely large percentages.

A number of indicators are evaluated in order to judge the model's performance. These metrics offer numerical

measurements that make it possible to assess how well the model is doing on a particular job. These measures can be

examined to learn more about the model's recall, accuracy, and other critical performance factors, enabling deft

conclusions to be made about the model's efficacy and room for development. The formulae to find these error

matrices are specified in Eqs. (2) - (5)

Table 3 Error Metrics of Linear Regression Model without Hyper-parameter Tuning

Without Hyper-parameter MSE RMSA MAE MAPE

Training Metrics 0.6258 0.7910 0.6025 10.028

Validation Metrics 0.4126 0.6423 0.4768 4.6222

Test Metrics 6.0070 2.4509 1.4894 inf

Table 4 Error Metrics of Linear Regression Model with Hyper-parameter Tuning

Without Hyper-parameter MSE RMSA MAE MAPE

Training Metrics 1.9698 0.0044 0/0012 0.0243

Validation Metrics 0.0008 0.0286 0.0043 0.0392

Test Metrics 0.6105 0.7813 0.3588 inf

These metrics provide insights into the model's performance, indicating the level of accuracy achieved in predicting

the target variable. It is important to note that the MAPE for the test set is indicated as "inf," which typically

signifies that there might be zero or close to zero values in the actual data, leading to an undefined percentage error.

5. CONCLUSION

The research findings derived from the analysis of the linear regression model demonstrate that the results obtained

through linear regression exhibit high accuracy and display low error matrix values. Notably, upon careful

examination, it becomes evident that the discrepancies between the actual and predicted values primarily occur

during significant shifts in trends. Nonetheless, the outcomes achieved after applying hyperparameter are highly

promising, showcasing near-perfect results in most cases.

